Project : Fleet monitoring

Table of contents:

Ch. 01 –

 Problem description; requirements drafting from layman's point of view;

Ch. 02 -

 Technical overview of the problem; technologies and expertise required; breakdown of detailed requirements; determining a list of priorities;

Ch. 03 -

 Problem modeling, case studies, first UML diagrams

Ch. 04 -

 First code snippets, proof of working code base on which can be built

Ch. 05 -

 Fully mature software; test cases included, ready for deployment.

Annex A -

 List of technologies used

Annex B -

 List of assignments over time

Annex C -

Chapter 01

Problem description:

Business management has a variable fleet, in the order of hundreds of vehicles. They want to be able to track the vehicles within a certain perimeter (e.g. city limits), knowing that they move mostly along predefined routes with known stop points.

Relating to vehicles, management needs to be able to track them in realtime, to predict their position after a certain lapse of time and to deliver the said information to devices placed throughout the perimeter.

Also the driver must be able to send and receive predefined messages relating to the vehicle status and traffic conditions and must receive (automated) messages relating to their adherence to the assigned timetable. The team of dispatchers is in charge of monitoring the fleet and ensuring the drivers receive the said messages. Dispatchers must have the ability to broadcast messages based on vehicle type (i.e. only buses) or vehicle particularity (i.e. line the vehicle is serving).

Basic human resources servicing must be available (e.g. Tracking worked time through the vehicle's available devices). Management already has an internal system for payroll.

Since dispatching and monitoring have been previously done manually/offline/by direct observation, the business intends to keep those methods as failsafes. Therefore, while the software/hardware is required to be able to cope with the business requirements, there is no need to insist on safeguards for extraordinary conditions; this is not an airplane control center, costs must be kept low.

Chapter 02

Technical overview:

Hardware requirements:

- 1 GPS device on every vehicle, for position monitoring, driver login, etc

- 1 antenna on every to send/receive messages to the server using GPRS

- 1 led panel to display the timetable information for each station

- 1 OBC (on-board computer) for every vehicle, for communication between driver and dispatchers

- 1 Server capable of servicing the underlying database

- 1 Workstation for the use of each dispatchers

- 1 dedicated internet link;

Software requirements:

- Database capable of hundreds of queries per second

- Dedicated software with the following abilities:

(1) Receive raw GPS data (coordinates) and calculate estimated distance between target points (i.e. stations);

(2) Analyze the pattern of movement and estimate necessary times to reach the next point(s); must take into consideration traffic jams and/or bottlenecks (i.e. traffic accidents);

(3) Possibility to override a vehicle's predefined route, allowing to reflect accurately in the system necessary detours (roadblocks, fuel refill)

(4) Record miscellaneous data provided by secondary vehicle subsystems;

(5) Report malfunctions signaled by said subsystems;

(6) Keep track of personnel operating the vehicles; clock-in/out capabilities;

(7) Use encrypted data

(8) Assign routes to vehicles dynamically, even though they are already serving some route;

(9) Log all relevant events;

(10) Server-side administration panel

Device overview:

On-board computer :

· used as an interface between driver and dispatchers;

· software provided by manufacturer, can only be customized;

· can track its own position by using satellite (GPS) data; this function is sometimes hindered by large and tall objects: i.e. On a narrow street, position data may not be available;

· can provide information regarding subsystems such as: AC (climatronic), door closed-open status, fuel level, fuel consumption, mileage in regard to certain timestamps, vehicle speed and direction;

· also it can communicate through LAN/USB with other devices available, such as ticket validators, routers, etc;

Antenna:

· needed to send and receive data from the GPRS medium, ideally mounted on vehicle top

· our team is not qualified to make any recommendation related to this area;

Internet connection:

· must be able to cope with burst of high-traffic volume (100 vehicles sending 4 kB of data requires a ~500kB connection)

· while the server is vulnerable to a Ddos attack, the network is virtually immune

· consider a software or hardware firewall

Detailed requirements, software:

(1) While tracking a vehicle on a straight line is pretty straightforward, there are exceptions to account for:

1. Curves; simply measuring a line between point A and point B does not always reflect what was the road actually taken; between points A and B there might have been a curve; time estimations need to account for this

2. The system must therefore have a predefined notion of what the route is

3. Also the system must account for a wide variety of traffic conditions, the impossibility to stop in the designated area, must correlate the position data with speed and door data

4. Linked with the above item, this can help detect when a driver actually skips stations or spends too few time in some

(2) There are two operations that can aid this estimation:

1. Historical data correlated by day type and day time (e.g. a crowded intersection during rush hour means longer times, visible from the past data)

2. Local traffic data generated by vehicles with similar routes (e.g. a road is bottlenecked by an accident, vehicle A signals this via the OBC, and vehicle B will be acknowledged by the system to have the same problem on that spot); this can help reduce the number of warnings generated for a driver

(3) De facto, GPRS is the cheapest way to transmit data, yet it is expensive; therefore:

1. A vehicle will announce its position only once in 15 seconds (even 30 if the schedule is relaxed)

2. This needs to be flexible: if the route is unplanned, the frequency must be immediately adjusted to something more sensible, e.g. 5 second or 10 second intervals

3. Different data must be asynchronously and independently; messages must not wait for position updating

(4) Examples of such subsystems include but are not limited to:

1. Door status (closed/open)

2. Fuel level, fuel consumption

3. Vehicle speed

4. Vehicle load (weight)

5. Estimated passanger load (if coupled with door counters)

6. Ticket validators linked via LAN interface

7. Climatronic status (on/off, working/broken), temperature of engine/inside passenger area

(5) .

(6) Basic human-resources capabilities include:

1. A system to keep track of hours worked on-board by personnel, with the ability for designated users (e.g. team leaders/managers) to add-remove certain periods or events

2. Web interface accesible by personnel to see their worked time, warnings generated by the system (e.g. Trouble tickets related to vehicle malfunctions, out-of-graphic problems, etc)

3. Payroll, PTO, shifts and other internal details are not handled there

4. Collected data is not to be processed, but rather made available for other software in as many ways as necessary (e.g. Database table, csv file, rss feed, etc)

5. Automated notifications for upcoming team events, on demand (e.g. weekly discussion and review of the driver's performance)

6. Automated archiving of events once they are marked so by a superior (e.g. there are some out-of-graphic notifications for a driver, he has a week to comment on the events on- and off-line, then after the meeting his boss also adds comments and then marks the events as PAST)

(7) Encryption must be used when:

1. Sending GPS coordinates, on the OBC side is done automatically, the software must be able to decode these messages;

2. Sending/receiving predefined messages, same as above

3. Sending/receiving data through a local LAN; probably not handled by our team;

(8) .

(9) .

(10) Server-side admin access to enable a superior to:

1. Add/Remove computers, users and roles

2. Connect a certain IP with a certain role (e.g. a dispatcher can only work from a designated workstation)

3. Set up automated failsafe actions (e.g. incremental backup of database every X hours, full backup every X days/months)

4. Terminate unauthorized access

5. In case of emergency, automated update e-mails with vehicle position (e.g. in case of highjacking)

Priority list: (milestones)

1. Functional and accesible database

2. Server skeleton: application runs and is able to log in the administrator

3. Server skeleton: first draft of an admin panel, ability to add users and configure their roles; ability to add machines and configure their roles; ability to add routes via scripts;

4. Client skeleton: the dispatcher-application (DA) runs on clients and connects to server and database; is able to pull routes from database;

5. Server fleshing: application receives login/logout credentials from an OBC; is able to match vehicle X with OBC Y in the database;

6. Client skeleton: DA is able to create the trifecta necessary for actually sending the vehicle on the street: DA matches a vehicle with a user and with a route;

7. Server: ability to receive signals from moving vehicles and process them locally; send the data to the DA automatically;

8. Client: DA allows for route changes, acknowledges logoffs, can do dynamic re-routing;

9. Server: Ability to estimate arrival times; ability to send this data to panels via GPRS;

10. (priority list established by client; see the feature list above)

Chapter 03

Diagrams and analyzes to do before actual design:

1. Offline workflow analysis; establish who is the boss of whom, how information and decisions flow, who is affected by what; (e.g. on a vehicle breakdown, the garage leader assigns a new vehicle to be send on route; the dispatcher has no word in here, must only dutifully reflect the change in the system)

2. Use case diagram, describe what can the users actually do with the system; internals are not covered;

